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Confidence Intervals for Effect Parameters
Common in Cancer Epidemiology
by Tosiya Sato*

This paper reviews approximate confidence intervals for some effect parameters common in cancer
epidemiology. These methods have computational feasibility and give nearly nominal coverage rates. In
the analysis of crude data, the simplest type of epidemiologic analysis, parameters of interest are the odds
ratio in case-control studies and the rate ratio and difference in cohort studies. These parameters can
estimate the instantaneous-incidence-rate ratio and difference that are the most meaningful effect meas-
ures in cancer epidemiology. Approximate confidence intervals for these parameters including the classical
Cornfield's method are mainly based on efficient scores.
When some confounding factors exist, stratified analysis and summary measures for effect parameters

are needed. Since the Mantel-Haenszel estimators have been widely used by epidemiologists as summary
measures, confidence intervals based on the Mantel-Haenszel estimators are described. The paper also
discusses recent developments in these methods.

Introduction
In the study of cancer or other chronic disease epi-

demiology, the most frequently used measure of disease
occurrence is the instantaneous incidence rate, which is
the number of new cases per unit of person-time at risk
(also called the incidence density or hazard rate). As for
measures of exposure-disease association, attention is
centered to the rate ratio and difference between the
instantaneous-incidence-rates in the exposed and the
unexposed groups.
Both of these two parameters of interest are directly

estimated in cohort studies, while only the rate ratio
can be estimated by the odds ratio in case-control stud-
ies. For a long period statisticians considered that the
odds ratio could estimate the risk ratio for the ratio of
two cumulative incidence rates, given that the disease
under study is rare (1). However, it is explained that
the odds ratio estimates the rate ratio, and the rate
ratio can approximate the risk ratio if the disease is rare
(2).
Many procedures have been proposed for calculating

approximate confidence intervals for the parameters of
interest in cancer epidemiology. The best-known ap-
proximation procedure is Cornfield's (3) method for the
odds ratio. In the analysis of crude (i.e., unstratified)
data, the approximate large-sample confidence inter-
vals, based on unconditional efficient scores including
Cornfield's method, may perform well.
Although a crude analysis possesses a cogency, strat-
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ified or matched analysis is often needed to remove con-
founding. The approximate methods based on efficient
scores can extend in a straightforward manner to com-
mon effect parameters when the number of strata re-
mains fixed but sample sizes become large (large strata).
However, the unconditional score methods will fail
when fine stratification or matching has been made
(sparse data). Since the famous Mantel-Haenszel esti-
mators for the common odds ratio (4), and the common
rate ratio (5) and difference (6) are consistent in both
large-strata and sparse-data large-sample theories
(7,8), the approximate confidence intervals based on the
Mantel-Haenszel estimators have been developed in the
past 10 years. Both of the first-order Taylor series in-
tervals and Fieller-like intervals based on the Mantel-
Haenszel approach perform well, and the latter pos-
sesses relations to tests of null association.

Approximate Methods for Crude
Data
Odds Ratio from Case-Control Studies

Consider a pair of independent binomial observations
(X,Y) with denominators (n,m) and success probabili-
ties (Pl, po). In case-control studies, X and Y denote
the number of exposed persons out of n cancer cases
and m controls. We wish to find approximate confidence
intervals for the odds ratio , = pl(l - po)l[po(l - Pi)]
based on efficient scores.
The unconditional log-likelihood may be the sum of

the logarithms of two binomials with parameters (Pi,
po). When one reparametrizes by letting p1 = 'Po/(IPo
+ 1 - po), then the score statistics are
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Si,(qpo) = aL(p,po)la* = (X - npl)/4
and

SplO(,po) = dL(*, Po)/dpo
= [t - (np, + mpo)] / [po(l - po)]

where t = X + Y. The maximum likelihood estimator
(MLE) of the nuisance parameter po, Po, is the solution
to the equation Spo(qi, PO) = 0. Using the conventional
notation that EA = EA(X;O) = npl and Pi = 'Po/ [*P0
+ (1 - Po)] EA could be determined as the appropriate
root of the quadratic equation

EA(m - t + EA) = 4(n - EA)(t - EA).
The score method is based on S1,*( PO) = (X - EA)/14.
Its asymptotic variance is estimated by

V/bJA[S*(111 Po)] =

where

Tnp1(1 -P) mpO(1- Po)l
The approximate 1 - a confidence interval (4'L, 4'u) iS
thus the two solutions to the equation

Tc(*) = (IX - EAl _ C' )2/V' = z2 (1)
where z,x./2 is the 100(1 - a/2) percentile of the normal
distribution and c' = 1/2, when a correction for conti-
nuity is needed, or c' = 0, otherwise. This equation is
identical with that proposed by Cornfield (3), and some
algorithms to solve it iteratively are given by Gart (9)
and Fleiss (10). Gart and Thomas (11,12) showed that
Cornfield's method with and without the continuity cor-
rection perform well in the conditional and unconditional
sample spaces, respectively.
As an alternative to Cornfield's method based on un-

conditional scores, we may use more accurate approx-
imate mean and variance of X conditional on t in Eq.
(1). The conditional distribution of the data is the non-
central hypergeometric distribution with noncentral pa-
rameter qi. Harkness (13) showed an exact relation be-
tween the mean and variance that E[X(m - t + X)lt]
= iIE[(n - X)(t - X)It], i.e., E(Xlt)[m - t + E(XJt)
+ va5(X/t) = +[{n - E(Xlt)} {t - E(Xlt)}+ A

(Xlt)]. McCullagh (14) proposed approximate mean EM
and variance v' determined to satisfy simultaneously
the two equations
EAM(M - t + EA) + iy =

q[(n - EA)(t - EMA) + V ] (2)
and

I N 1 1 1
N-i[EN n-En + t - A

-1
1

+m- t + EAJ
where N = n + m is the total sample size. For =

1, the exact mean and variance satisl Eqs. (2) and (3).
Substituting EA and v' instead of E and v in Eq. (1),
an alternative approximate confidence interval is ob-
tained as the two solutions to

TM(+) = (IX - EM| - C')2/IY = Z2 (4)
This equation may also be solved iteratively, but it is
easily calculated with the same manner to solve Eq. (1).
For a numerical comparison between Cornfield's

method [Eq.(1)] and McCullagh's methods [Eq. (4)], we
consider a crude case-control data from the Ille-et-Vi-
laine study of esophageal cancer that have been used
by Breslow and Day (15). Among 200 male cases di-
agnosed with esophageal cancer, 96 were exposed to
high daily alcohol consumption, while 109 among 775
controls were exposed to high daily alcohol consump-
tion. The (unconditional) maximum likelihood estimate
of the odds ratio is * = 5.640. The approximate 95%
confidence intervals (q'L, qpu) are:

Cornfield's method
with the continuity correction

McCullagh's method
with the continuity correction

(4.033, 7.947)
(3.943, 8.071)
(3.995, 7.924)
(3.935, 8.048)

For these data McCullagh's intervals show close
agreement with Cornfield's intervals, both with and
without the correction for continuity. Since Breslow and
Cologne (16) showed that McCullagh's approximation
would be accurate whenever p is near unity or N is
large, calculations of the actual coverage rates of
McCullagh's method for large * and moderate N will be
informative.

Rate Ratio and Difference from
Cohort Studies

In follow-up studies of dynamic populations, X and Y
denote the number of persons contracting the disease
out of n exposed and m unexposed fixed person-time
denominators. Thus X and Y are modeled as a pair of
independent Poisson observations with means (nr1,
mro), where r1 and ro are the instantaneous incidence
rates ofthe exposed and the unexposed. The parameters
of interest are the rate ratio w = r1/ro and the rate
difference e = r, - ro.

First we consider the approximate confidence interval
for the rate ratio based on efficient scores. Similar to
the odds ratio situation, by letting r1 = wro, the scores
are

S,(w, ro) = dL(w, ro)/hw = (X - nrl)/w
and

Sr0O(, ro) = aL(w, ro)/3ro = [t - (nrl + mro)] / rO
where t = X + Y. The MLE of r0 is rO= t/(nr + m),

(3) which is the solution to the equation Sro(w, h0) = 0. The
asymptotic variance of Sw(w, i0) is estimated by

-1

I\ w(nw + mn)I
var [S(o, hO)] = [

nmro

nmt
w(n, + M)2
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Hence the approximate 1 - a confidence interval (WL,
wu) is the two roots of the quadratic equation

(mX - nfy)2 2
wnmt (5)

Taylor series interval is given by

lx Y [X Y
nV---) +- Z,,a/2>f -+ m

(9)

This equation is identical with that derived from the
asymptotic normal approximation of mX - nwY or X
conditional on t, or the conditional score method (17).
For the rate ratio, it is well known that the conditional

distribution of X given t is the binomial with success
probability nwl(nw + m) and size t. The exact confi-
dence interval may be obtained using the mathematical
link between the binomial and the F distributions (18).
That is,

((IOL, ()U) = (n(Y + 1)Fe,,2(2Y + 2, 2X) (6)
m(X + 1)F,,,2(2X + 2, 2Y)8

nY /
where FX,2(vl, v2) is the 100(1 - a/2) percentile of the
F distribution with ul and v2 degrees of freedom. Paul-
son (19) proposed an approximation to Fc,12(V1, v2),
namely fl2/(9u,), 2/(9u2)), which is

fa, b) = [((1 - a)(1 - b) +

Z,/2Va(1 - b)2 + b(l - a)2 - abz,2)/
3

(1 - b)2 - bz21 (7)
We can thus obtain more accurate approximate interval
for w using Eq. (6) with Paulson's approximation [Eq.
(7)].

In making inferences about the rate difference it is
necessary to employ the unconditional distribution of
(X, Y). By letting r, = ro + e we have

Sj(tj rO) = (X - nr,)/r,
where ir= ro + e and

rO= [t - Nt + V(t - Nt)2 + 4pyt] I (2N)

where N = n + m. From Sato (17), we have

ajSr +( m

The asymmetric confidence interval (tL, tu) is the two
solutions to

T(
(

=
(

)
(n +

2 . (8)

Sato (1 7) gave the Newton-Raphson procedure to solve
Eq. (8) iteratively. Alternatively, the usual first-order

To illustrate these confidence interval methods for the
rate ratio and difference, we use follow-up data on the
breast cancer for women with tuberculosis repeatedly
exposed to multiple X-ray fluoroscopies and women with
tuberculosis not so exposed (20). Among the exposed
group, 41 women suffered from breast cancer out of
28,010 person-years, while 15 women suffered from
breast cancer out of 19,017 person-years among the
unexposed group. The estimated rate ratio is Z = 1.856.
The approximate 95% confidence interval based on the
score method [Eq. (5)] is (1.036, 3.325), while that ob-
tained by Eq. (6) with Eq. (7) is (1.006, 3.611). The
lower limits are very close, but the upper limit by the
score method is smaller than that by the approximate
conditional method. It is because the normal approxi-
mation in the use ofthe score method will be inadequate
unless t is large. When the rate difference is of interest,
its estimate is e = 67.50 per 100,000 person-years. The
approximate 95% interval based on the score method
Eq. (8) is (4.320, 129.0) per 100,000 person-years, while
that given by the usual method Eq. (9) is (7.493, 127.5)
per 100,000 person-years. Sato (17) showed that the
score method 8 gave nominal coverage rates under sev-
eral values for the parameters i, ro, n, and m except
for e = 0, ro = 0.2 per 1000 person-years and n = m
= 5000 person-years.

Stratified Analysis Based on the
Mantel-Haenszel Estimator

Stratified and Matched Case-Control
Analysis

Consider a series of K strata formed by pairs of in-
dependent binomial observations (Xk, Yk) with denom-
inators (nk, Mk), success probabilities (Plk, Po/) for k =
1, ..., K, and common odds ratio *. Let Plk = Xknk,
POk = Yk/mk, and Nk = nk + Mk. Noting that E[Plk
(1 - POk) - *POk(l -P1k)] = 0 either conditional on tk
= Xk + Yk or not, an unbiased estimating function for
i is arrived at by assigning weights ak to Plk(l - Po0)

-1POk(l _ plk) such that
K

W(4) = E ak[Plk(l - POk) - IPok(l - Plk)].
k=l

(10)

Mantel and Haenszel (4) chose standard weights (l/nk
+ 1/mk) -1 = nkmi/Nk as ak and proposed an estimator
that is the solution of W(O) = 0. The Mantel-Haenszel
odds ratio is explicitly defined by 4MH = EK 1 RJ
K

EK=lSk, where Rk = akPlk(l - POk) = Xk(Mk - Yk)1
Nk and Sk = akPOk(l - Plk) = Yk(nk - Xk)lNk. All the
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other Mantel-Haenszel estimators are derived by the
estimating function similar to Eq. (10) with the standard
weights.
The first formula for an asymptotic variance of 1MH

was given by Hauck (21) on the basis of large-strata
limiting model where the number of strata K remained
fixed but each Nk tended to infinity. Breslow (7) pro-
posed the conditional variance, based on the noncentral
hypergeometric distribution, using a sparse-data lim-
iting model in which K tended to infinity but a finite
number of different configurations of (nk, Mk) occurred.
A well-known example of this limiting model is (1, M)
matched case-control design. In both limiting models
4MH iS consistent for * and asymptotically normal. Al-
though 4MH is not asymptotically fully efficient (22) un-
less i4 is unity, it maintains high efficiency relative to
the efficient estimators for ip under both large-strata
and sparse-data cases (23,24).
Because of the skewness of the distribution of 4MH,

the natural log transformation is usually used to con-
struct the confidence intervals for * (25). Robins et al.
(26) and Phillips and Holland (27) showed that the
asymptotic variance of ln+MH under both limiting
models is given by

varA(ln'MH) =

K

E var(Rk - IPSk)
K -E(Rk]2

LAE(Rk)1
and proposed an easily computed consistent estimator
of varA(ln+MH) defined by

K

k=lNkVFS - VRBG -

(~Rk)

t+MH )]

which is the arithmetic average of an original estimator
and a recomputed one after interchange. The second
term of the right-hand side of the above equation is
equal to zero when Nk are constant across strata, and
tends to zero when Nk are increased as in large-strata
case. As a result, Flanders' estimator may essentially
be the same as VRBG. The resulting 1 - a Taylor series
confidence interval for ip (ln-method) is obtained by

PMH expl ± Z/ai2\/VRB] . (12)

A Fieller-like interval proposed by Sato (29) is based
on the statistic W(O) = >k=1 (Rk - Sk). Using the
results given by Robins et al. (26), we find W(O) will be
asymptotically normal with asymptotic mean zero and
variance IK=1 var(Rk - kS) under both sparse data
and large strata. An unbiased and invariant estimator
of var(Rk - Sk) is given by

var(Rk - P Sk) =

[(Qk + + )Rk + (Pk + N )Sk 1

(13)

If 'P is known, Ek 1 v(Rk - PSk) will be consistent
for Ek= 1 var(Rk - 1Sk). Hence the Fieller-like interval
(PL, 'u) is the two roots to the quadratic equation

(Rk PSk) c

+

K

E (QkRk + PkSk)

k=l
K K

(E Rk)(E Sk)

k=l k=l

K

E QkSk
+ k=l

(=E Sk)2-
k=l

T(Oi) =

k=14 (Qk

(11)

where Pk = (Xk + Mk - Yk)lNk and Qk = (Yk + nk
- Xk)lNk, from a first-order Taylor's series expansion.
Flanders (28) proposed a consistent estimator similar
to VRBG. Unfortunately, his estimator is not invariant
under interchange of the labels, i.e., the cases and the
controls, or the exposed and the unexposed. Under such
interchange, only the sign of ln4MH changes, and the
true variance cannot change. Obviously VRBG has this
invariance property. An invariant version of Flanders'
variance is given by

+ R + (Pk +1 )S]

(14)
2

where c = (1 + OP)/4, when the continuity correction is
needed, or c = 0, otherwise. The correction value (1 +
O/)4 is chosen in order to hold the invariance under
interchange of the labels. In the matched-pairs case,
Eq. (14) with the continuity correction reduces to the
equation based on the normal approximation to the con-

ditional distribution given by Breslow and Day (15).
The Fieller-like interval [Eq. (14)] is closely related

to the Cochran-Mantel-Haenszel (4,30) test of null as-

sociation (29). Consider the problem of testing that
= 1. For this null value, the following simplifications

K

1 E PkRk
VRBG = 2 k=[ 1

(ERk)2
k=l
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nominators (nk, Mk) and means (nkrlk, mkrOk), where
rlk and rOk are the instantaneous incidence rates of the
exposed and the unexposed. First suppose that the rate
ratio o = rlklrOk remains constant across strata. Let
rlk = Xklnk, rOk = Yklmk, Nk = nk + Mk, and tk =
Xk + Yk. Similar to the odds ratio case, the Mantel-
Haenszel estimating function for X is arrived at

K

W(w) nkk [^1k - wrok]
k=1 N

Hence the Mantel-Haenszel rate ratio (5) is the solution
of W(w) = 0 that (MH = > jlRkI>= lSk, where Rk
= mkXklNk and Sk = nkYklNk. In both sparse data and
large strata .MHiS also consistent but inefficient; how-
ever, it maintains relatively high efficiency (8,33). Be-
cause of the skewness of the distribution of 'MH, the
log scale may be used to set the confidence intervals for
w. The asymptotic variance formula of lnioMH is similar
to that of ln+MH. Noting that v'(Rk - WSk)
(I)nkMktkiNk, we have

occur:

Rk - Sk = Xk - tk N = Xk - E(Xkltk, 4 1),

and noting that E[ va(Rk - Sk)Itk] = var(Rk -
4'Skltk) even if tk is fixed,

E[var(Rk - 4Sk)Itk, 4 = 1] =

var(Rk - Skltk, 4 = 1) = var(Xkltk, 4 = 1)

where E(Xkltk, 4' = 1) and var(Xkltk, 4 = 1) are the
mean and variance of the (central) hypergeometric dis-
tribution. Consequently T(tp) under 4 = 1 is asymptot-
ically equivalent to the Cochran-Mantel-Haenszel test
both in sparse-data and large-strata models. In the spe-
cial case of (1, M)-matching T(O') with the continuity
correction reduces exactly to the test statistic derived
by Miettinen (31) and Pike and Morrows (32), and so it
reduces to McNemar's test in the matched-pairs case.
For a numerical comparison of the ln- and Fieller-like

methods, we use two data sets that are examples of
sparse-data and large-strata cases. Table 1 gives the (1,
4)-matched case-control data that is the study of the
effect of exogeneous estrogens on the risk of endome-
trial cancer at Los Angeles (15). The Mantel-Haenszel
odds ratio is 4MH = 8.462. We found the approximate
95% intervals (I'L, I'U) = (3.412, 20.99), (3.535, 20.25),
3.294, 23.53) for the In-method [Eq. (12)], the Fieller
interval [Eq. (14)] without and with the continuity cor-
rection, respectively. These methods give very close
intervals. Table 2 gives stratified data of the Ille-et-
Vilaine study (15) referred to previously. The Mantel-
Haenszel odds ratio is 4MH = 5.158. The approximate
95% interval based on the In-method is (3.562, 7.468),
while those obtained by the Fieller-like method without
and with the continuity correction are (3.580, 7.431) and
(3.498, 7.656). Again these intervals are reasonably
close.

Stratified Cohort Analysis
Consider now a series ofK pairs of independent Pois-

son observations (Xk, Yk) with fixed person-time de-

Table 1. The Los Angeles endometrial cancer data.

Number of controls exposed
Case status 0 1 2 3 4
Exposed 3 17 16 15 5
Unexposed 0 4 1 1 1

Table 2. The stratified Ille-et-Vilaine data.

Age class
Daily alcohol consumption

Case
Control

varA(ln MH) =

Since va' (Rk - WSk) = var(Rk - 'loSkItk), and
E(Rkltk), E(Skltk) are unbiased for E(Rk) and E(Sk),
Breslow (33) proposed a conditional variance estimator
defined by

VB =

Since Rk and Sk are also unbiased for E(Rk) and E(Sk),
respectively, Greenland and Robins (8) proposed a sim-
ple unconditional variance estimator given by

K

E nkMktk/Nk

k=l k=l

Eqs. (15) and (16) are invariant under interchange of
the exposed and the unexposed. Thus 1 - a confidence
intervals for X based on the ln-method are

W')MH exp[ +± z,/2\/V], i E{B, GR}.

K

E nkMktklNk

[k=l LLk=ls]

K

EnkMktklNk
k=l

-rK nkMktk 1 2

Lk = lNk(nkWMH + Mk)]

(15)

(16)

(17)

25-34 35-44 45-54 .55-64 65-74 75 +

High Low High Low High Low High Low High Low High Low
1 0 4 5 25 21 42 34 19 36 5 8
9 106 26 164 29 138 27 139 18 88 0 31

99



T. SATO

The Fieller-like method also extends in a straight-
forward manner to the common rate ratio (29). Using
arguments that parallel those given in the odds ratio
case, the approximate interval (wL, wOU) is obtained as
the two solutions to the quadratic equation

the Fieller-like interval for e is the two solutions to the
quadratic equation

T(W) =

[ (MkXk nkYk)lNk t E nkmk/Nk) - cI

[IE (Rk - WSk) - C]
-K-

w E nkMktk/Nk2
-k=l

T(W) = = Zx2, (18)

where c = (1 + o)/4 with the continuity correction, or
otherwise zero.
Next we consider the situation in which the rate dif-

ference = k - rOk remains constant across strata.
Let tk = k - rok. The Mantel-Haenszel rate difference
(6) is defined as the solution to the estimating equation

K

W(t) E tkkmk(e )

k=1 Nk
leading to (MH = [k= 1 (mkXk - nkYk)lNk]l

K

(Ek=lnkmk/Nk). Using that E[mkXk + nkYk] =

var(mA,Xk - nkYk), Greenland and Robins (8) proposed
a variance estimator of AMH analogous to Eq. (16) that
is defined by

VElrA(tMH) =

[A(mtXk + n'Yk)lNk1
(k=l

K \2

E nkmklNk
k=l/

The 1 - a Taylor series interval for e is thus obtained
by

EMH Z,/2Via r) (19)

As an alternative to the Taylor series interval, we
propose a Fieller-like method similar to Eqs. (14) and
(18). We may easily give
var(mkXk - nkYk) = E[nkmk(mk - nAk) + nkmktk]

If e is known, =jnkMk(mk -nk)lNk + k=1 nkmktl

Nk is consistent for ( k =lnkmk/Nk)var1A(MH). Hence

- K - K

t Enkmk(mk - nk)INk + E nkmktkINk
-k=l1 k=l1

=
2

Za/2 (20)

where c' = 1/2 with the continuity correction, or oth-
erwise zero.

It is noteworthy that the Fieller-like methods Eqs.
(18) and (20) have close relation to test of null exposure-
disease association. When testing null association that
w = 1 and t = 0, both T(w) and T(t) can reduce to

T(wlw = 1) = T(tjt = 0)

[ >.E(Xk nktk/Nk)

K

E nkmktk/Nk
k=l

2

- C']

which is identical with the efficient score test of null
association given by Shore et al. (34).
To illustrate the confidence intervals methods for the

rate ratio, we consider the Montana study of arsenic
exposure and respiratory cancer (35). Table 3 gives ob-
served deaths and person-years of the Montana study
stratified by age, class and calendar period. We find a
summary rate ratio estimate of (MH = 3.138. The con-
ditional and unconditional variance estimates of InWMH
are calculated according to Eq. (15) of VB = 0.0501 and
Eq. (16) of VGR = 0.0520. The approximate 95% con-
fidence intervals based on the ln-method [Eq. (17)] are
(2.023, 4.867) with the conditional variance and (2.007,
4.907) with the unconditional one, while those obtained
by solving Eq. (18) are (2.014, 4.889) without the cor-
rection and (1.948, 5.102) with it. Similar to the odds
ratio situation, these intervals are quite close.

Although both the rate ratio and difference cannot
remain constant in a data set, in order to illustrate the

Table 3. Deaths from respiratory cancer among Montana smelter workers.

Period
1938-1949 1950-1959 1960-1969 1970-1977

Age Arsenic exposure Deaths Person-years Deaths Person-years Deaths Person-years Deaths Person-years
40-49 High 0 337.29 0 121.00

Low 2 3075.27 0 936.75
50-59 High 4 626.72 3 349.53 1 142.33

Low 2 2849.76 3 2195.59 3 747.77
60-69 High 9 672.09 7 441.10 3 244.82 1 100.64

Low 2 2085.43 7 1675.91 10 1501.73 1 440.21
70-79 High 1 277.25 2 268.27 1 197.20 2 92.75

Low 3 833.61 6 973.32 6 1027.12 6 674.44
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methods for the rate difference we use the same Mon-
tana data. A summary rate difference is 'MH = 589.8
per 100,000 person-years. The approximate 95% inter-
val based in Eq. (19) is (288.1, 891.4) per 100,000 person-
years, while the Fieller-like intervals are (320.3, 936.9)
per 100,000 person-years without the correction and
(306.5, 954.7) per 100,000 person-years with it. The in-
tervals for the Fieller-like method are shifted to the
right of that for the first-order Taylor series interval.

REFERENCES

1. Cornfield, J. A method of estimating comparative rates from clin-
ical data. J. Natl. Cancer Inst. 11: 1269-1275 (1951).

2. Greenland, S., and Thomas, D. C. On the need for the rare disease
assumption in case-control studies. Am. J. Epidemiol. 116: 547-
553 (1982).

3. Cornfield, J. A statistical problem arising from retrospective
studies. In: Proceedings ofthe Third Berkeley Symposium 4: 135-
148 (1956).

4. Mantel, N. and Haenszel, W. Statistical aspects of the analysis
of data from retrospective studies of disease. J. Natl. Cancer
Inst. 22: 719-748 (1959).

5. Rothman, K. J. and Boice, J. D. Epidemiologic Analysis with a
Programmable Calculator, 2nd edition. Epidemiology Resources,
Inc., Boston, MA 1982.

6. Greenland, S. Interpretation and estimation of summary ratios
under heterogeneity. Statist. Med. 1: 217-227 (1982).

7. Breslow, N. E. Odds ratio estimators when the data are sparse.
Biometrika 68: 73-84 (1981).

8. Greenland, S., and Robins, J. M. Estimation of a common effect
parameter from sparse follow-up data. Biometrics 41: 55-68
(1985).

9. Gart, J. J. The comparison of proportions: a review of significance
tests, confidence intervals and adjustments for stratification. Rev.
Int. Statist. Inst. 39: 148-169 (1971).

10. Fieiss, J. L. Confidence intervals for the odds ratio in case-control
studies: the state of the art. J. Chron. Dis. 32: 69-77 (1979).

11. Gart, J. J. and Thomas, D. G. Numerical results on approximate
confidence limits for the odds ratio. J. R. Statist. Soc. B34: 441-
447 (1972).

12. Gart, J. J., and Thomas, D. G. The performance of three ap-
proximate confidence limit methods for the odds ratio. Am J.
Epidemiol. 115: 453-470 (1982).

13. Harkness, W. L. Properties of the extended hypergeometric dis-
tribution. Ann. Meth. Stat. 36: 938-945 (1965).

14. McCullagh, P. On the elimination of nuisance parameters in the
proportional odds model. J. R. Statist. Soc. B46: 250-256 (1984).

15. Breslow, N. E., and Day, N. E. Statistical Methods in Cancer

Research, Vol. 1. The Analysis of Case-Control Studies. Inter-
national Agency for Research on Cancer, Lyon, 1980.

16. Breslow, N. E., and Cologne, J. Methods of estimation in log
odds ratio regression models. Biometrics 42: 949-954 (1986).

17. Sato, T. Confidence intervals for effect parameters from cohort
studies based on efficient scores [in Japanese]. Jpn. J. Appl. Stat.
17: 43-54 (1988).

18. Armitage, P., and Berry, G. Statistical Methods in Medical Re-
search, 2nd edition. Blackwell Scientific Publishing, Oxford, 1987.

19. Paulson, E. An approximate normalization of the analysis of var-
iance distribution. Ann. Math. Stat. 13: 233-235 (1942).

20. Rothman, K. J. Modem Epidemiology. Little, Brown and Com-
pany, Boston, MA, 1986.

21. Hauck, W. W. The large-sample variance of the Mantel-Haenszel
estimator of a common odds ratio. Biometrics 35: 817-819 (1979).

22. Tarone, R. E., Gart, J. J., and Hauck, W. W. On the asymptotic
inefficiency of certain noniterative estimators of a common rela-
tive risk or odds ratio. Biometrika 70: 519-522 (1983).

23. Donner, A., and Hauck, W. W. The large-sample relative effi-
ciency of the Mantel-Haenszel estimator in the fixed-strata case.
Biometrics 42: 537-545 (1986).

24. Hauck, W. W., and Donner, A. The asymptotic relative efficiency
of the Mantel-Haenszel estimator in the increasing-number-of-
strata case. Biometrics 44: 379-384 (1988).

25. Breslow, N. E. and Liang, K.-Y. The variance of the Mantel-
Haenszel estimator. Biometrics 38: 943-952 (1982).

26. Robins, J. M., Breslow, N. E., and Greenland, S. Estimators of
the Mantel-Haenszel variance consistent in both sparse data and
large-strata limiting models. Biometrics 42: 311-323 (1986).

27. Phillps, A., and Holland, P. W. Estimators of the variance of the
Mantel-Haenszel log-odds-ratio estimate. Biometrics 43: 425-431
(1987).

28. Flanders, W. D. A new variance estimator for the Mantel-Haen-
szel odds ratio. Biometrics 41: 637-642 (1985).

29. Sato, T. Confidence limits for the common odds ratio based on a
sympotic distribution of the Mantel-Haenszel estimator. Biomet-
rics 40 (in press).

30. Cochran, W.G. Some methods for strengthening the common X2
tests. Biometrics 10: 417-451 (1954).

31. Miettinen, 0. S. Estimation of relative risk from individually
matched series. Biometrics 26: 75-86 (1970).

32. Pike, M. C., and Morrows, R. H. Statistical analysis of patient-
control studies in epidemiology. Factor under investigation an all-
or-none variable. Br. J. Prevent. Soc. Med. 24: 42-44 (1970).

33. Breslow, N. E. Elementary methods of cohort analysis. Int. J.
Epidemiol. 13: 112-115 (1984).

34. Shore, R. E., Pasternack, B. S., and Curnen, M. G. M. Relating
influenza epidemics to childhood leukemia in tumor registries
without a defined population base: a critique with suggestions for
improved methods. Am. J. Epidemiol. 103: 527-535 (1976).

35. Breslow, N. E., and Day, N. E. Statistical Methods in Cancer
Research, Vol. 2. The Design and Analysis of Cohort Studies.
International Agency for Research on Cancer, Lyon, 1987.


